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(Received 14 January 1957 and in revised for 22 March 1957)

In a recent article Okaya & Pepinsky (1956) have treated
the problem of phase determination for noncentric
crystals in which one or more atoms scatter anomalously.
Relations are obtained for the structure factors [Fj|2
and |F_p|?2 which, when the positions of the anomalous
atoms are known, reduce to a quadratic equation giving
two possible solutions for the components of the structure
amplitude, and the phase of the reflection h(hki). A
number of methods of choosing one solution are pro-
posed, including the use of a second incident wavelength
producing normal scattering for all atoms; this will
provide a second quadratic equation.

In the present communication the method of using two
incident wavelengths is examined. Linear equations in the
components of the structure amplitude are obtained
which give a single solution when the positions of the
anomalously scattering atoms are known. One equation
permits the method to be extended to centrosymmetric
structures. The relations are derived for the general case
in which both radiations produce anomalous scattering.
This is necessary, since, with heavy atoms, anomalous
scattering occurs for all wavelengths in the normal target
range, due to the electrons in L and higher levels. In
cases where incident wavelengths can be chosen such
that one atom only in the unit cell scatters anomalously,
direct phase determination is possible, using only the
observed [Fn|? and [F_p|? values.

The atomic scattering factor for anomalous dispersion

5= R A

where Af; and f;’ are the in-phase and out-of-phase in-
crements to the normal scattering factor f]. The structure
amplitude for the reflection h(hkl) is

F h= Ah+ iBh Py
which can be resolved into real and imaginary compo-
nents as
F h =
where

n n
A4 = 3 flcos2n(h.ry), By = 3 flsin2x(h.r);
i=1 =t

25+ AAp— By +i(BaS+ 4B+ Ay)

n n
A4y, = 3 Afjcos2n(h.r)), ABy = X Af; sin 2n(h.r));
j=1 j=1
n n
Ay = X f; cos2r(h.r), By = 3 f; sin2r(h.r)).
j=1 =1

r; is the position vector of atom j in the unit cell.
AAy, ABy, Ay and By contain terms dependent only
upon the position of the anomalous scattering atoms.
The AjS and B}S terms employed here differ from
those used by Okaya & Pepinsky in that here the sum-
mation includes the normal scattering contribution of
all atoms in the unit cell. For the reflection —h(hkl)
the structure amplitude is

AC10

Py = (Ap~+ 444+ By)—i(By~+ABy—4y) .
The square of the structure amplitude for h(hkl) is
|Fu* = FuFg = (AR~+ 44, — By)?+ (By™+4By+ Ay )%;
and for —h(zkl) it is

|Fonl® = F_nF_p
= (A}%+ 444+ By )?+ By*>+ 4By — Ay)?.

The difference of squares gives the relation

|Ful?—|F_p|?
= 4{(Ay BY>— By A}%) +(Ay ABy—By'A4p)} (1)

This equation, which is linear in 4§ and B}, has been
discussed by Okaya & Pepinsky, and in a recent article
by Peerdeman & Bijvoet (1956).

In order to obtain a second linear equation in AR
and Bp*, consider the case where two incident wave-
lengths 4, and 4, have been used. The mean square value

for reflections h(hkl) and —h(kkl) is

Fh = HIFuP + 1"} = (A% + (BE™*+ b + £}

+2(4A4, AR+ AByBRS) , (2)
where
op = A2+ AY®, Bh = ABg2+By®.

Subtracting the two equations of type (2), we have

3{#h, — Fhy, +(ohy, —ohy) + (P — Phy)}
= (AA;ul - AA,',AZ)A{;'S'+ (AB,',;“ - AB,’,ZZ) B2s. (3)

It is evident that, where the positions of the anomalous
scatters are known, (1) and (3) give the values of AS
and BpS and thus the phase of the reflection h(hkl).

The two-wavelength relation, equation (3), has certain
interesting features which have not been previously
noted in connection with anomalous dispersion. The first
is that this relation alone can be used to determine the
sign of the phase in centrosymmetric structures, where
the positions of the anomalous scattering atoms are
known; here B = 0 and the relation gives magnitude
and sign of Ap5. The second is that, since only the mean
square values #} appear, the relation can be evaluated
from intensity measurements on powder specimens; this
will enable such effects as primary and secondary ex-
tinction and accidental inequalities of reflection from
equivalent faces in single crystal specimens to be avoided.

When a pair of wavelengths are chosen such that one
atom only in the unit cell scatters anomalously, then,
considering this atom as the cell origin, equation (3)
reduces to

Ty, — Ty, (A AR5+ U3~ (D],
B 2(Afaz,—Afaz)

Ag® . (4

33
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and equation (1) reduces to
|Fnl*~ | Fnl
4f,

The criteria for optimum wavelengths for phase deter-
mination are found in the denominators of equations (4)
and (5); first, that one radiation gives a large value of
the out-of-phase component f,’, for one or more atoms,
which will give a large difference in the observed reflec-
tions F§ and F2; secondly, that the difference of the
in-phase components of anomalous scattering for the two
radiations, (Afa —4f, 1) be as large as possible to produce

a large dlfference in the observed mean square values
2
Fi By and Z3 By
The accuracy of the method is dependent upon an
exact knowledge of the anomalous scattering increments

Bg.s. — (5)
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Af’ and f'' to the atomic scattering factor. The table of
these values calculated by Dauben & Templeton (1955)
for Z > 20 is for three radiations Cr Kx, Cu K& and
Mo K« only. Values for intermediate radiations can be
estimated by interpolation, but for general application of
this method of calculation of exact values, or their
experimental measurement, a full range of radiations
would be of great assistance.
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The crystal structures of thorium bismuthides. By Riccarpo Ferro, Chemical Institute, Laboratory of

Physical Chemistry of Genoa University, Genoa, Italy

(Received 3 April 1957)

The diagram of the thorium-bismuth alloys, obtained
in vacuo by direct synthesis from the elements, has been
studied by means of X-rays; the examination was per-
formed by the powder method using Cu K« radiation
(A(Cu Ko;) = 1-540500 A). The only impurity in the
thorium used (prepared by reduction of ThQO, with Ca)
was about 0-39% oxygen, mainly as ThQ,; the bismuth
had a purity higher than 99-99,, with traces of lead.

In the part of the diagram richer in bismuth the alloys
show the existence of the compounds Th,Bi, and ThBi,.
No other compounds having higher quantities of bismuth
have been observed, as alloys of a composition of around
80% Bi (both quenched from 1000° C. or annealed up
to 400° C.) showed only the Debye reflexions of ThBi,
and elementary bismuth.

The X-ray examination of the central part of the dia-
gram shows the possible existence of two phases of a
composition near to ThBi; however, it was not possible
(with several thermal treatments, including also annealing
and heating to higher temperatures) to obtain a cubic
phase of the NaCl- or CsCl-type, as might expected by
comparison with similar systems of thorium and uranium

with other metalloids. With regard to these alloys it
must be remarked that, if heated ¢n vacuo at approx-
imately 1500° C., they undergo alteration by bismuth
distillation.

Finally, the alloys with a low bismuth content have
not shown (after heating at a high temperature and cool-
ing) the formation of other compounds: samples which
on analysis had a composition around 309 Bi show
mainly the reflexions of elementary thorium.

As with bismuth and the intermediary phases, the
photographs exclude the formation of appreciable solid
solution for thorium. All the alloys are fairly pyrophoric.

Th3Big

The compound Th;Bi, (45-44% Th) is body-centrad
cubic with

ay=9559 A, Z =4, ¢ = 1165 g.cm.™3.

The structure is of the ThyP, type (Meisel, 1939), D7,
type (Strukturbericht, 1943) with:

Space group No. 220 (International Tables, 1952): I43d.

Atomic positions:
12Th in (@) (0,0,0; 3,4, 4) + & 0,1; Q.
16 Bi in (¢) (0,0,0; £, %, %) + o, x, o;
) with x = 15
Each thorium atom is thus bound to 8 bismuth atoms
at the distance of 3:32 A.

ThBi,
The compound ThBi, (35-70% Th) is tetragonal with
a, = 4492, a; = 9208 &, a,/a, = 2:070, Z = 9,
o = 11-50 g.em. ™8,

The structure corresponds to the C38 type (Struktur-
berichs, 1937) with:

Space group No. 129 (International Tables, 1952):
P4 /nmm.

Atomic positions:
2Bi; in (a) 0,0,0; %,1,0.
2Big in (¢) 0,3, 2; },0,% with 2 = 0-63.
2Th in (¢') 0,4,¢ 4,0,7 with ¢ = 0-28.



